Quasi-exactly solvable quartic: real QES locus

نویسندگان

  • Alexandre Eremenko
  • Andrei Gabrielov
چکیده

We describe the real quasi-exactly solvable locus of the PT-symmetric quartic using Nevanlinna parametrization. MSC: 81Q05, 34M60, 34A05

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasi-exactly solvable quartic: elementary integrals and asymptotics

We study elementary eigenfunctions y = peh of operators L(y) = y+Py, where p, h and P are polynomials in one variable. For the case when h is an odd cubic polynomial, we found an interesting identity which is used to describe the spectral locus. We also establish some asymptotic properties of the QES spectral locus. MSC: 81Q05, 34M60, 34A05.

متن کامل

Quasi-exactly solvable quartic: real algebraic spectral locus

We describe the real quasi-exactly solvable spectral locus of the PT-symmetric quartic using the Nevanlinna parametrization. MSC: 81Q05, 34M60, 34A05.

متن کامل

Supersymmetric Method for Constructing Quasi-Exactly and Conditionally-Exactly Solvable Potentials

Using supersymmetric quantum mechanics we develop a new method for constructing quasi-exactly solvable (QES) potentials with two known eigenstates. This method is extended for constructing conditionally-exactly solvable potentials (CES). The considered QES potentials at certain values of parameters become exactly solvable and can be treated as CES ones.

متن کامل

Quasi-exact minus-quartic oscillators in strong-core regime

PT −symmetric potentials V (x) = −x + iB x + C x + iDx + iF/x + G/x are quasi-exactly solvable, i.e., a specific choice of a small G = G = integer/4 is known to lead to wave functions ψ(x) in closed form at certain charges F = F (QES) and energies E = E. The existence of an alternative, simpler and non-numerical version of such a construction is announced here in the new dynamical regime of ver...

متن کامل

Quasi-exact solvable models based on special functions

We suggest a systematic method of extension of quasi-exactly solvable (QES) systems. We construct finite-dimensional subspaces on the basis of special functions (hypergeometric, Airy, Bessel ones) invariant with respect to the action of differential operators of the second order with polynomial coefficients. As a example of physical applications, we show that the known two-photon Rabi Hamiltoni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011